These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Compound 48/80 is a selective and powerful inhibitor of calmodulin-regulated functions. Author: Gietzen K, Adamczyk-Engelmann P, Wüthrich A, Konstantinova A, Bader H. Journal: Biochim Biophys Acta; 1983 Dec 07; 736(1):109-18. PubMed ID: 6317027. Abstract: Compound 48/80, a condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde, is composed of a family of cationic amphiphiles differing in the degree of polymerization. Compound 48/80 was found to be a potent inhibitor of the calmodulin-activated fraction of brain phosphodiesterase and red blood cell Ca2+-transport ATPase, with IC50 values of 0.3 and 0.85 micrograms/ml, respectively. However, the basal activity of both enzymes is not at all suppressed by the drug at concentrations up to 300 micrograms/ml. Inhibition of Ca2+ transport into inside-out red blood cell vesicles by compound 48/80 follows a similar pattern in that basal, calmodulin-independent, transport is also not affected by the drug. Kinetic analysis revealed that the stimulation of Ca2+-transport ATPase induced by calmodulin is inhibited by compound 48/80 according to a competitive mechanism. It was demonstrated that the inhibitory constituents of compound 48/80 bind to calmodulin in a Ca2+-dependent fashion. Comparison of the specificity of several anti-calmodulin drugs showed that compound 48/80 is the most specific inhibitor of the calmodulin-dependent fraction of red blood cell Ca2+-transport ATPase that has been described hitherto. In addition, compound 48/80 was found to be a rather specific inhibitor of the calmodulin-induced activation of Ca2+-transport ATPase when compared with the stimulation induced by an anionic amphiphile or by limited proteolysis. Half-maximal inhibition of the activity stimulated by oleic acid or mild tryptic digestion required 8- and 32-times higher concentrations of compound 48/80, respectively, compared with the calmodulin-dependent fraction of the ATPase activity. Moreover, calmodulin-independent systems as rabbit skeletal muscle sarcoplasmic reticulum Ca2+-transport ATPase or calf cardiac sarcolemma (Na+ + K+)-transport ATPase are far less influenced by compound 48/80 as compared with trifluoperazine and calmidazolium. Because of its high specificity compound 48/80 is proposed to be a promising tool for studying calmodulin-dependent processes.[Abstract] [Full Text] [Related] [New Search]