These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of post-translational products of herpes simplex virus gene 35 proteins binding to the surfaces of full capsids but not empty capsids. Author: Braun DK, Roizman B, Pereira L. Journal: J Virol; 1984 Jan; 49(1):142-53. PubMed ID: 6317887. Abstract: We report on the properties of a genetically and immunologically related family of structural (gamma) polypeptides of herpes simplex virus 1 designated as infected cell polypeptides (ICP) 35. The members of this family were identified and studied with the aid of a panel of monoclonal antibodies exemplified by H745. This monoclonal antibody reacted with six bands (ICP35a to 35f) formed by ICPs contained in either HEp-2 or Vero cell lysates electrophoretically separated in denaturing gels and transferred to nitrocellulose sheets. The six bands had apparent molecular weights in the range 39,000 to 50,000. Traces of ICP35 with apparent molecular weights of 37,000 were also observed in some preparations. On two-dimensional separation ICP35 family members formed at least 20 spots reactive with H745. These differed in both isoelectric properties and electrophoretic mobility in denaturing gels. Pulse-chase experiments, together with results published earlier, indicate that ICP35a to 35d are cytoplasmic precursors to nuclear products. One of these corresponds to virion protein 22a, a component of capsids containing DNA accumulating in the nuclei of infected cells. ICP35 was labeled by 32Pi added to the medium, but the extent of phosphorylation varied and may be a determinant of isoelectric properties. Iodination studies indicate that ICP35e and 35f are the predominant forms of ICP35 present on the surface of full, nuclear capsids containing DNA. None of the members of the ICP35 family were detected in empty capsids. Surface iodination labeled the major capsid protein (ICP5) of empty capsids, but not of full capsids, indicating that ICP35e and 35f coat the surface of the viral capsid and block access to sites for iodination of ICP5, the major capsid protein.[Abstract] [Full Text] [Related] [New Search]