These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Short-chain aliphatic alcohols increase rat-liver microsomal membrane fluidity and affect the activities of some microsomal membrane-bound enzymes.
    Author: Garda HA, Brenner RR.
    Journal: Biochim Biophys Acta; 1984 Jan 11; 769(1):160-70. PubMed ID: 6318821.
    Abstract:
    n-Butyl and isoamyl alcohols decrease the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and enhance the efficiency of pyrene excimer formation when these probes are incorporated in rat-liver microsomal membrane, suggesting an increase in rotational and translational mobilities. Neither alcohol modifies NADH-ferricyanide reductase activity but both increase NADH-cytochrome c reductase activity. This was interpreted as an increase in the rate of lateral diffusion of the proteins cytochrome b5 and cytochrome b5 reductase as a consequence of the enhanced membrane lipid phase fluidity. Microsomal delta 9 and delta 6 desaturase activities in the presence of isoamyl alcohol were also studied. This alcohol decreases delta 9 desaturation when it is measured at a low substrate concentration (13 microM palmitic acid), but it is not modified when it is measured at a high substrate concentration (66 microM palmitic acid). delta 6 desaturation is diminished by isoamyl alcohol when it is measured with both 13 microM and 66 microM linoleic acid. The influence of isoamyl alcohol on the glucose-6-phosphatase system activity was also studied. In non-detergent-treated microsomes, isoamyl alcohol enhances glucose-6-phosphatase activity. However, if microsomes are previously treated with 0.1% Triton X-100 isoamyl alcohol does not modify this activity. The enhancement of the glucose 6-phosphate transport rate is not due to membrane permeability barrier disruption, since isoamyl alcohol does not modify mannose-6-phosphohydrolase latency. This would suggest that an increase in membrane lipid phase fluidity specifically activates glucose 6-phosphate transport across the membrane.
    [Abstract] [Full Text] [Related] [New Search]