These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Benzyl derivative facilitation of transcription in Escherichia coli at the ara and lac operon promoters: metabolite gene regulation (MGR).
    Author: Kline EL, West RW, Ink BS, Kline PM, Rodriguez RL.
    Journal: Mol Gen Genet; 1984; 193(2):340-8. PubMed ID: 6319971.
    Abstract:
    A number of benzyl derivatives have been tested for their ability to induce the expression of the araBAD operon in an Escherichia coli K-12 strain. Those derivatives shown to be stimulatory include: benzoic acid (BA), para-amino benzoic acid (PABA), para-hydroxy benzoic acid (PHBA), ortho-amino benzoic acid (OABA), 3-hydroxy-4-methoxy phenylethylamine (MTA), and 4-hydroxy-3-methoxyphenol acetic acid (HVA). The araC gene product was necessary to facilitate the induction. To further characterize if the inductive effect was mediated at the level of transcription, an araBAD-tetracycline resistant (Tcr) operon fusion plasmid (pAP-B) was employed. Benzyl derivatives which induce expression of the araBAD operon in situ also induced a Tcr phenotype with pAP-B. Both indole acetic acid (IAA) and imidazole (IM), which were previously shown to circumvent the necessity for cAMP in the induction of the araBAD operon, also induced a Tcr phenotype with pAP-B. Induction of lac or other cAMP responding operons with the inducing molecules at the chromosomal level was not detectable when assessed by carbon utilization. However, a lacZYA-Tcr operon fusion plasmid (pLPI) did respond to IAA and several of the inducing benzyl derivatives. Catabolite repression of chromosomal araBAD expression was reversed when the exogenous concentration of OABA was elevated. Similar effects on the Tcr phenotypes conferred by pAP-B and pLP1 were observed when OABA or several other inducing benzyl derivatives were present exogenously.
    [Abstract] [Full Text] [Related] [New Search]