These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells. Possible involvement of two different transduction mechanisms in alpha 1-adrenergic action.
    Author: Corvera S, Hernandez-Sotomayor SM, Garcia-Sainz JA.
    Journal: Biochim Biophys Acta; 1984 Feb 17; 803(1-2):95-105. PubMed ID: 6320911.
    Abstract:
    The actions of hormones which are associated to cAMP-dependent and calcium-dependent mechanisms of signal transduction were studied in hepatocytes obtained from rats with different thyroid states. In cells from euthyroid and hyperthyroid rats, the metabolic actions of epinephrine were mediated mainly through alpha 1-adrenoceptors; beta-adrenoceptors seem to be functionally unimportant. In contrast, both alpha 1- and beta-adrenoceptors mediate the actions of epinephrine in hepatocytes from hypothyroid animals. Phosphatidylinositol labeling was strongly stimulated by epinephrine, vasopressin and angiotensin II in cells from eu-, hyper- or hypothyroid rats. However, metabolic responsiveness to vasopressin and angiotensin II was markedly impaired in the hypothyroid state. The glycogenolytic response to the calcium ionophore A-23187 was also impaired, suggesting that hepatocytes from hypothyroid rats are less sensitive to calcium signalling. The persistence of alpha 1-adrenergic responsiveness in the hypothyroid state suggests that the mechanism of signal transduction for alpha 1-adrenergic amines is not identical to that of the vasopressor peptides. alpha 1-Adrenergic stimulation of cyclic AMP accumulation was not detected in cells from hypothyroid rats. These data suggest that factors besides calcium and besides cAMP are probably involved in alpha 1-adrenergic actions. Metabolic responses to glucagon and to the cAMP analogue dibutyryl cAMP were not markedly changed during hypothyroidism, although cAMP accumulation produced by glucagon and beta-adrenergic agonists was enhanced. In hyperthyroidism, cell responsiveness to epinephrine, vasopressin, angiotensin II and glucagon was decreased, but sensitivity to cAMP was not markedly altered. The factors involved in this hyposensitivity to hormones during hyperthyroidism are unclear.
    [Abstract] [Full Text] [Related] [New Search]