These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two low Km hydrolytic activities on dinucleoside 5',5"'-P1,P4-tetraphosphates in rat liver. Characterization as the specific dinucleoside tetraphosphatase and a phosphodiesterase I-like enzyme.
    Author: Cameselle JC, Costas MJ, Günther Sillero MA, Sillero A.
    Journal: J Biol Chem; 1984 Mar 10; 259(5):2879-85. PubMed ID: 6321483.
    Abstract:
    Ninety per cent of total rat liver hydrolytic activity (1.4 units/g of fresh tissue) on diadenosine or diguanosine 5',5"'-P1,P4-tetraphosphate (Ap4A and Gp4G) present in isotonic homogenates sedimented at 37,000 X g. Supernatant activity corresponded to the earlier described, cytosolic and specific, bis(5'-guanosyl) tetraphosphatase or dinucleoside tetraphosphatase (EC 3.6.1.17; Lobatón, C. D., Vallejo, C. G., Sillero, A., and Sillero, M. A. G. (1975) Eur. J. Biochem. 50, 495-501). Particulate activity, as extracted with Triton X-100, is composed of two enzymes separable by gel filtration. One of them was a low Km (1 microM Gp4G, 5 microM Ap4A) 22,000-dalton enzyme, strongly inhibited by guanosine 5'-tetraphosphate (Ki = 9 nM), and likely identical to the cytosolic specific enzyme. The other Triton-extracted form was unspecific, with an estimated molecular weight of 150,000 (sucrose gradient) or 450,000 (gel filtration), both in the presence of detergent. Substrate specificity was broad, requiring a nucleoside 5'-phosphoryl residue with a free 3'-hydroxyl group, and acting on 5'-5' and 5'-3' compounds. Km values were 12 microM (Gp4G) and 8 microM (Ap4A). Guanosine 5'-tetraphosphate was a competitive inhibitor (Ki = 2 microM). It required bivalent cations since a residual activity after dialysis was abolished by EDTA and enhanced by Mg2+, Mn2+, or Ca2+. In the absence of other added cations, the enzyme, inhibited by 1 mM EDTA, is fully reactivated by an equimolar amount of Zn2+. The possible identity of this activity with phosphodiesterase I (EC 3.1.4.1; Razzell, W.E. (1963) Methods Enzymol. 6, 236-258) is discussed, and its potential role in the metabolism of dinucleoside tetraphosphates is indicated.
    [Abstract] [Full Text] [Related] [New Search]