These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A post-alpha gene function turns off the capacity of a host protein to bind DNA in cells infected with herpes simplex virus 1. Author: Arsenakis M, Roizman B. Journal: J Virol; 1984 Mar; 49(3):813-8. PubMed ID: 6321766. Abstract: HEp-2 cell proteins electrophoretically separated in denaturing polyacrylamide gels and electrically transferred to nitrocellulose sheets contain a polypeptide which efficiently binds linear native DNA end labeled with 32P but not denatured DNA. The polypeptide has an apparent molecular weight of ca. 130,000. The activity of the protein was stable, and no appreciable turnover was observed after exposure of uninfected cells to inhibitory concentrations of cycloheximide for intervals of up to 24 h. However, the activity was absent from lysates of cells harvested 6 h or later postinfection with wild-type viruses. To identify the viral function involved in the loss of DNA-binding activity, we tested the lysates of cells infected with several mutants. Thus, the DNA-binding activity was unaffected in cells infected with a temperature-sensitive mutant (herpes simplex virus 1 tsLB2) in the alpha 4 gene and was maintained at a nonpermissive temperature (39 degrees C). Experiments involving (i) temperature shift-down of cells infected with tsLB2 in the presence of cycloheximide, (ii) withdrawal of cycloheximide in the presence and absence of actinomycin D from cells infected with wild-type virus, (iii) infection of cells at 33 and 39 degrees C with herpes simplex virus 1 tsHA1 carrying a temperature-sensitive lesion in the beta 8 gene, and (iv) infection of cells in the presence of inhibitory concentrations of phosphonoacetate led to the conclusion that the viral functions responsible for the loss of DNA-binding capacity were specified by either beta or gamma genes not dependent on viral DNA synthesis for their expression.[Abstract] [Full Text] [Related] [New Search]