These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure of the divalent metal ion activator binding site of S-adenosylmethionine synthetase studied by vanadyl(IV) electron paramagnetic resonance. Author: Markham GD. Journal: Biochemistry; 1984 Jan 31; 23(3):470-8. PubMed ID: 6322838. Abstract: The structure of the divalent metal ion binding site of S-adenosylmethionine synthetase from Escherichia coli has been studied by using the vanadyl(IV) ion (VO2+) as probe. VO2+ binds at a single site per subunit in the presence or absence of substrates. Single turnover experiments measuring S-adenosylmethionine (AdoMet) formation from methionine and the ATP analogue 5'-adenylyl imidodiphosphate show that complexes containing VO2+ and either Mg2+ or Ca2+ as a second metal ion are catalytically active, while a complex containing VO2+ alone is inactive. Electron paramagnetic resonance spectra of the enzyme-VO2+ complex, as well as complexes also containing AdoMet or methionine, indicate the coordination of two water molecules and at least two protein ligands to the VO2+. In complexes with polyphosphate substrates or products (e.g., enzyme-VO2+-ATP-methionine, enzyme-VO2+-PPi-Mg2+), EPR spectral changes reveal ligand substitutions on the VO2+, and 8.5-G isotropic superhyperfine coupling to two 31P nuclei can be resolved. 17O superhyperfine coupling from [17O]pyrophosphate indicates coordination of two oxygen atoms of PPi to the VO2+ ion. Thus the polyphosphate compounds are bidentate ligands to the VO2+, demonstrating that the VO2+ binds at the active site and suggesting a catalytic role for the protein-bound metal ion.[Abstract] [Full Text] [Related] [New Search]