These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series.
    Author: L'Allemain G, Franchi A, Cragoe E, Pouysségur J.
    Journal: J Biol Chem; 1984 Apr 10; 259(7):4313-9. PubMed ID: 6323465.
    Abstract:
    We have previously characterized in Chinese hamster lung fibroblasts a growth factor activatable and amiloride-sensitive Na+/H+ antiport (Pouysségur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3935-3939). In this report, we compared the affinity of 28 analogs of amiloride for inhibition of the Na+/H+ antiport and inhibition of growth factor-induced DNA synthesis. We showed that the guanidino moiety of amiloride must be protonated to elicit inhibition of the Na+/H+ exchange. Substitutions within this moiety by methyl, phenyl, or benzyl groups reduced the activity 20- to 1000-fold. On the contrary, substitution of the proton(s) of the 5-amino group of amiloride with alkyl or alkenyl groups increases potency up to 100-fold (5-N,N-diethylamiloride has a KI of 4 X 10(-8) M). In HCO-3-free medium and at lower [Na+]0 (25 or 50 mM) to reduce competition with amiloride, we found that growth factor-stimulated DNA synthesis of G0-arrested cells is inhibited by amiloride and its analogs with the same rank order as that for Na+/H+ antiporter inhibition. Over a range of 3 logs of concentration, a tight correlation was established between IC50 for the blockade of both processes, Na+/H+ exchange and percentage of cells entering the S phase upon growth factor action. These findings indicate that, in HCO-3-free medium, the functioning of the Na+/H+ exchange system is required for growth factor-induced DNA synthesis.
    [Abstract] [Full Text] [Related] [New Search]