These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the c-myc gene by translocation: a model for translational control. Author: Saito H, Hayday AC, Wiman K, Hayward WS, Tonegawa S. Journal: Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7476-80. PubMed ID: 6324175. Abstract: We have shown that the human cellular oncogene c-myc is composed of three exons and is transcribed from two initiation sites separated by 175-base-pair DNA in HeLa cells. For both resulting mRNA species, exon 1 composes the 5' untranslated region and the initiator methionine is located 16 base pairs down-stream from the 5' splice acceptor of exon 2. In a non-Hodgkin lymphoma, Manca, harboring a t(8; 14) translocation, c-myc gene is broken within intron 1, and its exons 2 and 3 are translocated to a site between the heavy chain joining region cluster and C mu-coding DNA segment of the immunoglobulin heavy chain locus. The translocated c-myc gene is transcribed from points within intron 1 but is apparently still translated from the same methionine codon as the mRNA from the unrearranged c-myc gene. The nucleotide sequence of the c-myc gene shows that a region of exon 1 is highly complementary to a region of exon 2. Thus the mRNA from the untranslocated c-myc gene, as opposed to that of the translocated c-myc gene, could form a stable stem-loop structure (delta Go = -90 kcal/mol; 1 cal = 4.184 J) where the initiator AUG would be located within the loop. In view of the bind-and-scan model for the initiation of eukaryotic translation, we propose that such a secondary structure will severely hinder the translation. We further propose that the c-myc gene is often activated by translocation through the escape from such a translational suppression.[Abstract] [Full Text] [Related] [New Search]