These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autogenous repression of Escherichia coli threonyl-tRNA synthetase expression in vitro.
    Author: Lestienne P, Plumbridge JA, Grunberg-Manago M, Blanquet S.
    Journal: J Biol Chem; 1984 Apr 25; 259(8):5232-7. PubMed ID: 6325425.
    Abstract:
    Escherichia coli threonyl-tRNA synthetase (EC 6.1.1.3) expression has been examined in an acellular protein-synthesizing system programmed with a plasmid DNA carrying thrS, infC, pheS, and pheT, the gene for threonyl-tRNA synthetase, initiation factor 3, and the two protomers of phenylalanyl-tRNA synthetase (EC 6.1.1.20), respectively. The initial rate of synthesis of L-[35S]methionine-labeled threonyl-tRNA synthetase is markedly reduced by the addition of homogeneous RNase-free threonyl-tRNA synthetase to the assay, not by that of phenylanyl- or tyrosyl-tRNA synthetase (EC 6.1.1.1). The inhibition is 50% in the presence of 0.25 microM threonyl-tRNA synthetase and reaches 90% with 2 microM enzyme. Synthesis of mRNA in the acellular DNA-dependent protein-synthesizing system has been measured by molecular hybridization to gene-specific lambda DNA probes corresponding to thrS, pheS, and pheT. The addition to the assay of 2 microM threonyl-tRNA synthetase does not affect the extent of mRNA hybridizing to the thrS-specific DNA probe. This result is interpreted as reflecting an effect of the synthetase on its expression at the translational level. Analysis of the DNA sequence of the thrS gene predicts several potential secondary structures capable of forming in the thrS mRNA. One of these potential structures is a cloverleaf. The possible role of such structures in controlling expression of thrS is discussed.
    [Abstract] [Full Text] [Related] [New Search]