These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The interaction of DNA polymerase III and the product of the Escherichia coli mutator gene, mutD.
    Author: DiFrancesco R, Bhatnagar SK, Brown A, Bessman MJ.
    Journal: J Biol Chem; 1984 May 10; 259(9):5567-73. PubMed ID: 6325441.
    Abstract:
    A comparison of DNA polymerase III core enzyme (McHenry, C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) prepared from wild type Escherichia coli and a strain harboring the mutator gene, mutD5 (Degnen, G. E., and Cox, E. C. (1974) J. Bacteriol. 17, 477-487) has revealed several differences in their properties. Among these are alterations in the heat stability, divalent cation requirement, pH optimum, 3'----5'-single strand exonuclease activity, and DNA-dependent conversion of a deoxynucleoside triphosphate to its corresponding monophosphate ("turnover"). The decrease in the 3'-single strand exonuclease and turnover indicate a defect in the editing function of the mutD strain, which is at least in part responsible for the high spontaneous mutation rate in mutD. Transformation of mutD by a hybrid plasmid, pRD3, constructed from an EcoRI restriction fragment of E. coli and pBR322, cures mutD of its abnormally high mutation rate, and simultaneously restores its 3'-exonuclease activity. These observations are consistent with the notion that the mutD gene product is a subunit of DNA polymerase III, and it either contains the catalytic site for the 3'-exonuclease or modulates its activity. From a consideration of the known molecular weights of the subunits in DNA polymerase III core (McHenry C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) the molecular weights of the two proteins translated in maxicells transformed with pRD3, and from a comparison of our results with those obtained with the mutator dnaQ (Horiuchi, T., Maki, H., Maruyama, M., and Sekiguchi, M. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 3770-3774) and the work of Cox and Horner (Cox, E. C., and Horner, D. L. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2295-2299) as well as Echols et al. (Echols, H., Lu, C., and Burgers, P. M. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2189-2192) we tentatively assign the mutD gene product to the epsilon subunit of DNA polymerase III.
    [Abstract] [Full Text] [Related] [New Search]