These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cytochrome c peroxidase-cytochrome c electron transfer complex. The role of histidine residues. Author: Bosshard HR, Bänziger J, Hasler T, Poulos TL. Journal: J Biol Chem; 1984 May 10; 259(9):5683-90. PubMed ID: 6325445. Abstract: The histidine-selective reagent diethyl pyrocarbonate and dye-sensitized photooxidation have been used to study the functional role of histidines in cytochrome c peroxidase. Of the 6 histidines in cytochrome c peroxidase, 5 are modified by diethyl pyrocarbonate at alkaline pH and 4 by photooxidation. The sixth histidine serves as the proximal heme ligand and is unavailable for reaction. Both modification reactions result in the loss of enzymic activity. However, photooxidized peroxidase retains its ability to react with H2O2 and to form a 1:1 cytochrome c peroxidase-cytochrome c complex. It is, therefore, concluded that the extra histidine modified by diethyl pyrocarbonate is the catalytic site distal histidine, His 52. In the presence of cytochrome c, no enzymic activity is lost by photooxidation and a single histidine, His 181, is protected from oxidative destruction. This finding provides strong support for the hypothetical model of the cytochrome c peroxidase-cytochrome c complex in which His 181 lies near the center of the intermolecular interface where it seems to provide an important link in the electron transfer process.[Abstract] [Full Text] [Related] [New Search]