These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular K+ permeation across the cortical collecting tubule: effects of Na+-K+ pump inhibition and membrane depolarization.
    Author: Stokes JB.
    Journal: Am J Physiol; 1984 Apr; 246(4 Pt 2):F467-75. PubMed ID: 6326592.
    Abstract:
    These experiments examined the possibility that alterations in cell cation content and/or membrane voltage could influence cell K+ permeability of the cortical collecting tubule. Using the amiloride-treated isolated perfused rabbit cortical collecting tubule, ouabain or a K+-free bath reduced the magnitude of the K+ diffusion voltage. In addition, both methods of Na+-K+-ATPase inhibition reduced the K+ efflux (lumen-to-bath) rate coefficient (KK) without affecting the Na+ efflux rate coefficient. The magnitude of the reduction of KK could not be explained by a model of simple diffusion across two membranes in series even if the intracellular voltage were abolished. Thus, pump inhibition reduced cell K+ permeability. To determine whether membrane depolarization could induce a change in membrane permeability, [K+] was increased to 20 mM in both perfusate and bath. The reduction in KK was within the range predicted by the three-compartment model (36%). Differential membrane depolarization by raising lumen [K+] or bath [K+] produced disparate results. Apical depolarization reduced KK but basolateral depolarization did not. Taken together these results indicate that intracellular ion content may play a major role in regulating cell K+ permeability independent of voltage-dependent effects. In addition, under these experimental conditions, the apical membrane may be the rate-limiting barrier to cellular transfer.
    [Abstract] [Full Text] [Related] [New Search]