These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determinants of brain activation-induced cortical NAD/NADH responses in vivo.
    Author: Dóra E, Gyulai L, Kovách AG.
    Journal: Brain Res; 1984 May 07; 299(1):61-72. PubMed ID: 6326966.
    Abstract:
    In order to elucidate that which are the factors that may influence the direction of brain activation-induced changes in the redox state of oxidized/reduced nicotinamide adenine dinucleotide (NAD/NADH), the brain cortex was electrically stimulated during arterial hypotension and following reinfusion of the shed blood, during arterial hyper- and hypoxia, and during the second phase of spreading cortical depression (SD). Cerebrocortical NADH fluorescence and vascular volume ( CVV ) of cats, anaesthetized by chloralose, were measured with a microscope fluororeflectometer . Under physiologically normal conditions electrical stimulation resulted in pronounced cortical NAD reduction and increase in CVV . These reactions were not altered by arterial hyperoxia and continuous superfusion of the brain cortex with oxygenated artificial cerebrospinal fluid (mock CSF). Arterial hypotension and SD (in phase II) increased NAD reduction and CVV markedly, and the superimposed electrical stimulation brought about NADH oxidation and greatly depressed CVV responses. Reinfusion of the shed blood did not restore NAD/NADH redox state and CVV to their reference levels, and electrical stimulation under this condition led to NADH oxidation and negligible vascular reactions. Since under physiologically normal conditions electrical activation of the brain cortex resulted in NAD reduction and marked increase in CVV and the magnitude of these reactions were not altered by arterial hyperoxia or by superfusion of the brain cortex with oxygenated CSF, it is very unlikely that the brain cortex became hypoxic during stimulation. Because when the steady NAD/NADH redox state of the brain cortex was shifted toward reduction by arterial hypotension and reinfusion and SD, electrical stimulation led to NADH oxidation, it is suggested that the prestimulatory steady redox state has great importance in determining the direction of NAD/NADH redox reactions evoked by activation of the brain cortex.
    [Abstract] [Full Text] [Related] [New Search]