These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interferon receptor interaction. Internalization of interferon alpha 2 and modulation of its receptor on human cells.
    Author: Sarkar FH, Gupta SL.
    Journal: Eur J Biochem; 1984 May 02; 140(3):461-7. PubMed ID: 6327298.
    Abstract:
    Studies reported earlier [ Joshi et al. (1982) J. Biol. Chem. 257, 13884-13887] have indicated that human interferon-alpha 2 (HuIFN-alpha 2) binds to a specific macromolecular receptor on human cells as identified by cross-linking with bifunctional cross-linking reagents and analysis by polyacrylamide gel electrophoresis. We have carried out experiments to investigate the fate of the interferon-receptor complex on the cell surface under conditions which lead to cellular response. As analyzed by cross-linking and gel electrophoresis, the interferon-receptor complex, formed on incubation with 125I-IFN-alpha 2 at 4 degrees C, persisted at the cell surface for several hours at 4 degrees C; however, if the cells were switched to 37 degrees C, there was a rapid decline in the complex, apparently due to a loss of the interferon receptors from the cell surface. This was associated with an internalization of the 125I-interferon as indicated by the fact that, on incubation at 37 degrees C, an appreciable fraction of the cell-associated interferon (approximately equal to 50%) became resistant to trypsin digestion, or dissociation on incubation in growth medium or low-pH buffer. A large fraction of the trypsin-resistant (internalized) 125I-labeled material migrated as intact interferon in polyacrylamide gels, and it was immunoprecipitated by anti-(HuIFN-alpha)antibodies but not by anti-(HuIFN-beta)antibodies. The bulk of the internalized 125I-interferon was recovered in a particulate fraction and, on cross-linking with disuccinimidyl suberate, a 150000-Mr complex could be detected. The results suggest that interferon may be internalized as a complex with the receptor, which may account for the loss of the interferon-receptors on the cell surface. This modulation of the IFN-alpha/beta receptors was induced by HuIFN-alpha and HuIFN-beta but not by HuIFN-gamma. The recovery of the IFN-alpha/beta receptors, lost upon incubation with HuIFN-alpha, took several hours and required protein synthesis. The significance of the results is discussed.
    [Abstract] [Full Text] [Related] [New Search]