These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites. Affinity fractionation on columns of platelet factor 4, plasma fibronectin, and octyl-sepharose. Author: Lark MW, Culp LA. Journal: J Biol Chem; 1984 Jun 10; 259(11):6773-82. PubMed ID: 6327694. Abstract: Both newly formed and long-term culture-generated substratum adhesion sites, generated by EGTA-mediated detachment of Balb/c SVT2 cells, were extracted with an eta-octyl-beta-D-glucopyranoside buffer containing salt and several protease inhibitors under conditions which result in maximal solubilization of the sulfate-radiolabeled proteoglycans. Because of the functional importance of heparan sulfate proteoglycans in the fibronectin-dependent cell-substratum adhesion processes of these cells, these proteoglycans were fractionated on affinity columns of octyl-Sepharose or of the heparan sulfate-binding proteins platelet factor 4 or plasma fibronectin. These affinity matrices resolved a number of both binding and nonbinding classes of heparan sulfate proteoglycan from both types of adhesion sites. In particular, the platelet factor 4 column could resolve several proteoglycans with differing binding affinities. Approximately twice as much heparan sulfate proteoglycan from newly formed sites bound to all three matrices as proteoglycan from longterm sites. The proteoglycan which bound to one matrix was then tested for binding to a second matrix; this approach resolved a number of biochemically distinct species. For example, one-half of the fibronectin-Sepharose-binding fraction from the long-term sites could also bind to platelet factor 4-Sepharose; however, over 90% of the fibronectin-binding fraction from newly formed sites could bind to platelet factor 4. A major portion of the octyl-Sepharose-binding fractions of the original extracts could bind to fibronectin-Sepharose. These studies indicate that some of these proteoglycans have overlapping affinities for fibronectin, platelet factor 4, and octyl-Sepharose and that a portion of the heparan sulfate proteoglycan from these adhesion sites cannot bind to any of these affinity matrices. These results are discussed with regard to the functional significance of these various heparan sulfate proteoglycans in mediating adhesion to extracellular matrices containing fibronectin or platelet factor 4.[Abstract] [Full Text] [Related] [New Search]