These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Current generated by backward-running electrogenic Na pump in squid giant axons.
    Author: De Weer P, Rakowski RF.
    Journal: Nature; ; 309(5967):450-2. PubMed ID: 6328314.
    Abstract:
    The sodium pump of animal cells is electrogenic, that is, it normally exports more sodium ions than it imports potassium ions. In the squid giant axon, the resulting net outward electric current has a density of a few microA cm-2, and contributes 1-2 mV to the resting membrane potential. The pump is driven by the free energy of hydrolysis of ATP, and in some instances it has been possible to run the pump backwards and synthesize ATP by lowering the [ATP]/[ADP] X [Pi] ratio and steepening the transmembrane Na+ and K+ gradients. Here we have examined the question of whether a backward-running sodium pump conserves its Na+/K+ greater than 1 stoichiometry. We demonstrate reversal of the sodium pump of squid giant axon, and find that backward pumping indeed produces a net inward electric current. This current is voltage-sensitive. Our observations have mechanistic implications for models of the sodium pump.
    [Abstract] [Full Text] [Related] [New Search]