These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of protein phosphokinase and protein phosphatase during the nuclear envelope nucleoside triphosphatase reaction.
    Author: Bachmann M, Bernd A, Schröder HC, Zahn RK, Müller WE.
    Journal: Biochim Biophys Acta; 1984 Jun 27; 773(2):308-16. PubMed ID: 6329288.
    Abstract:
    The activities of nuclear envelope-associated protein phosphokinase and protein phosphatase were determined in nuclear ghosts from liver and oviduct of quails. The protein kinase was found to be inhibited by poly(A) by 75%. During the kinase reaction proteins with molecular weights of 106 000 and 64 000 were phosphorylated. The phosphoprotein phosphatase from liver was stimulated to 190% by poly(A), whereas only a slight enhancing effect by this polymer was determined with the oviduct enzyme (to 125%). Comparative determinations of the nuclear ghost-associated enzyme activities revealed the following values (in nmol Pi/min per 10(8) ghosts); oviduct: phosphokinase, 0.015; phosphatase, 0.004 and nucleoside triphosphatase, 39.4; and liver: phosphokinase, 0.044; phosphatase, 0.012 and nucleoside triphosphatase, 11.7. These data indicate that phosphorylation/dephosphorylation proceeds independently of the nucleoside triphosphatase cycle. This assumption is supported by analytical results revealing that no marked dephosphorylation occurs after poly(A) binding to the nuclear envelope. Moreover, stoichiometrical data showed a nearly 1:1 molar ratio between ATP-binding and phosphorylation of nuclear envelope protein. From these findings a new model for the nucleoside triphosphatase-mediated poly(A)(+)mRNA efflux from nuclei is deducted, proposing phosphokinase and phosphatase only to modulate the affinity of the 'carrier structure' for poly(A) (+)mRNA, but not to constitute the nucleoside triphosphatase.
    [Abstract] [Full Text] [Related] [New Search]