These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunotherapy of murine leukemia. VIII. Efficacy of passive serum therapy of Friend leukemia virus-induced disease in immunocompromised mice. Author: Genovesi EV, Livnat D, Collins JJ. Journal: J Natl Cancer Inst; 1983 Feb; 70(2):311-22. PubMed ID: 6337292. Abstract: Previous studies have demonstrated that the passive therapy of Friend murine leukemia virus (F-MuLV)-induced disease with chimpanzee anti-F-MuLV serum is accompanied by the development of host antiviral humoral and cellular immunity, the latter measurable in adoptive transfer protocols and by the ability of serum-protected mice to resist virus rechallenge. The present study was designed to further examine the contribution of various compartments of the host immune system to serum therapy itself, as well as to the acquired antiviral immunity that develops in serum-protected mice, through the use of naturally immunocompromised animals [e.g., nude athymic mice and natural killer (NK)-deficient beige mutant mice] or mice treated with immunoabrogating agents such as sublethal irradiation, cyclophosphamide [Cytoxan (Cy)], cortisone, and 89Sr. The studies in nude mice indicate that while mature T-cells are not needed for effective serum therapy, they do appear to be necessary for the long-term resistance of serum-protected mice to virus rechallenge and for the generation of the cell population(s) responsible for adoptive transfer of antiviral immunity. Furthermore, this acquired resistance is not due to virus neutralization by serum antibodies since antibody-negative, Cy-treated, serum-protected mice still reject the secondary virus infection. Lastly, while the immunocompromise systems examined did effect various host antiviral immune responses, none of them, including the NK-deficient beige mutation, significantly diminished the efficacy of the passive serum therapy of F-MuLV-induced disease.[Abstract] [Full Text] [Related] [New Search]