These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stereochemical specificity for sterols in Saccharomyces cerevisiae.
    Author: Pinto WJ, Nes WR.
    Journal: J Biol Chem; 1983 Apr 10; 258(7):4472-6. PubMed ID: 6339498.
    Abstract:
    When sterol biosynthesis in oxygen-deprived wild type Saccharomyces cerevisiae was prevented by the presence of 2,3-iminosqualene, an inhibitor of 2,3-oxidosqualene cyclase, an absolute requirement for a sterol with a 24 beta-methyl group was found. Neither the configuration nor the size of the alkyl group at C-24 could be altered. For instance, while 24 beta-methylcholesterol (22-dihydrobrassicasterol) permitted good growth, contrary to earlier work without the inhibitor no growth at all resulted from the presence of cholesterol or its 24 alpha-methyl-, 24 alpha-ethyl-, or 24 beta-ethyl derivatives (campesterol, sitosterol, and clionasterol, respectively). The only sterol lacking a 24 beta-methyl group which allowed growth was desmosterol (24-dehydro-cholesterol), but desmosterol was metabolized to 24 beta-methylcholesterol by C1-transfer and reduction. When cholesterol supported growth in the absence of the inhibitor, small amounts of endogenously synthesized 24 beta-methylsterols (ergosterol and 22-dihydroergosterol) were identified. This previously unrecognized absolute specificity for both chirality and bulk at C-24 suggests the involvement of protein binding in at least one of the roles which sterol plays in this single-celled eukaryote.
    [Abstract] [Full Text] [Related] [New Search]