These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study.
    Author: Wintermeyer W, Gualerzi C.
    Journal: Biochemistry; 1983 Feb 01; 22(3):690-4. PubMed ID: 6340723.
    Abstract:
    The mechanism of binding of N-AcPhe-tRNAPhe (yeast) to poly(U)-programmed Escherichia coli 30S ribosomal subunits and the effect of individual initiation factors (IF-1, IF-2, and IF-3) and GTP on this process have been studied by fluorescence stopped-flow kinetic measurements. The formation of the ternary complex was followed by an increase of both intensity and polarization of the fluorescence of a proflavin label located in the anticodon loop of the tRNA. The effect of the initiation factors and GTP is to increase the velocity of ternary complex formation (about 400-fold at 7 mM Mg2+). In the presence of the three initiation factors and GTP the formation of the ternary complex could be resolved into two partial reactions: a fast apparently second-order step (k12 = 5 x 10(6) M-1 s-1, k21 = 1.4 s-1) followed by a slow rearrangement step (k23 less than or equal to 0.1 s-1). The data suggest a mechanism in which the ternary complex is formed by at least two rearrangements of an initially formed preternary complex. The accelerating effects of both IF-2 and IF-3 can be understood by assuming a synergistic allosteric action of the factors on the 30S ribosomal subunit, whereas IF-1 appears to act indirectly by influencing the other two factors.
    [Abstract] [Full Text] [Related] [New Search]