These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nonstereospecific substrate usage by glyoxalase I. Author: Griffis CE, Ong LH, Buettner L, Creighton DJ. Journal: Biochemistry; 1983 Jun 07; 22(12):2945-51. PubMed ID: 6347254. Abstract: Glyoxalase I operates on a mixture of rapidly interconverting diasteriomeric thiohemiacetals, formed in a preequilibrium step between glutathione and alpha-ketoaldehyde. That both diasteriomers are directly used as substrates by the enzyme from yeast and from porcine erythrocytes is an outcome of a series of isotope-trapping experiments in which pulse solutions composed of the two diasteriomeric thiohemiacetals, due to [3H]glutathione and phenylglyoxal, are rapidly mixed with chase solutions containing excess unlabeled glutathione and successively increasing concentrations of glyoxalase I. As the enzyme approaches infinite concentration in the chase solution, the radioactivity incorporated into the S-mandeloylglutathione product approaches 100% of the total radioactivity due to both diasteriomers from the pulse solution. The special properties of the active site that allow the enzyme to accommodate both diasteriomeric substrate forms may also account for the fact that the cis and the trans isomers of various para-substituted S-(phenylethenyl)glutathione derivatives are both strong competitive inhibitors of the enzyme. A catalytic mechanism is proposed for glyoxalase I involving catalyzed interconversion of the bound diasteriomeric thiohemiacetals before transformation to final product.[Abstract] [Full Text] [Related] [New Search]