These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High mutagenic potency of several polycyclic aromatic hydrocarbons induced by liver postmitochondrial fractions from control and xenobiotic-treated immature carp. Author: Protić-Sabljić M, Kurelec B. Journal: Mutat Res; 1983 Aug; 118(3):177-89. PubMed ID: 6348528. Abstract: The metabolism of carcinogens in fish was examined by measuring the activation of different polycyclic aromatic hydrocarbons (PAH) by carp (Cyprinus carpio L.) liver post-mitochondrial fractions (S9) using the Salmonella typhimurium TA100 reverse mutation assay. For this study, 1 non-carcinogen, anthracene (AN), and 4 carcinogens, chrysene (CHR), benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC) and 7,12-dimethylbenzanthracene (DMBA), were chosen. The bioactivating potency of the metabolic systems of carp pretreated with phenobarbital (PB), 3MC or Aroclor 1254 (ARO) were compared to uninduced carp liver. The results show that carp liver has the ability to metabolize carcinogenic PAH into mutagenic metabolites, which is enhanced when carp are pretreated with 3MC or ARO, but not with PB. A positive correlation between the induction of aryl hydrocarbon hydroxylase (AHH) activity in carp liver and the mutagenic potencies of CHR, BaP, DMBA and 3MC, has been observed. The bioactivating ability of carp liver S9 was compared with the ability of the same fractions from female Wistar rats (this study) as well as from Sprague-Dawley rats (literature data). When the mutagenic potencies of selected PAH had been normalized on the activity of BaP, the following order of mutagenic activities with S9 fractions from ARO-treated animals was obtained: (1) BaP (1) greater than DMBA (0.26) greater than 3MC (0.22) greater than CHR (0.05) greater than AN (0) for carp; (2) BaP (1) greater than 3MC (0.48) greater than CHR (0.31) greater than DMBA (0.16) greater than AN (0) for Sprague-Dawley rats; and (3) BaP (1) greater than 3MC (0.17) greater than DMBA (0.11) greater than CHR (0) = AN (0) for female Wistar rats. We conclude that carp and rats are very similar in their ability to activate carcinogenic PAH into mutagenic metabolites, which suggests that carp may be very susceptible to the carcinogenic activity of these compounds. According to our results from the mutagenicity study, as well as from the enzyme induction study, we propose the use of carp as a suitable model system for the study of chemical carcinogens.[Abstract] [Full Text] [Related] [New Search]