These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fate of photo-induced 8-methoxypsoralen mono-adducts in yeast. Evidence for bypass of these lesions in the absence of excision repair.
    Author: Chanet R, Cassier C, Magaña-Schwencke N, Moustacchi E.
    Journal: Mutat Res; 1983 Aug; 112(4):201-14. PubMed ID: 6350865.
    Abstract:
    A fraction of UVA-induced 8-methoxypsoralen (8-MOP) mono-adducts can be transformed by a second UVA (365 nm) irradiation procedure into lethal cross-links in Saccharomyces cerevisiae. To follow the fate of cross-linkable mono-adducts, cells were incubated in complete medium between the two UVA doses and survival was measured. The killing effect of the second UVA dose decreases rapidly in haploid wild-type as well as in strains blocked in mutagenic (RAD6+ type) or in recombinogenic (RAD52+ type) repair pathways. This is also true in the pso1-1 and pso2-1 strains selected for sensitivity to 8-MOP plus UVA treatment. In contrast, persistence of mono-adducts is observed in strains blocked in the excision-resynthesis repair pathway. In other words, cross-linkable mono-adducts are repaired by the excision process. The use of the cell-cycle conditional mutant strain (cdc14-1) permitted us to apply the second dose at a specific cell-cycle stage (post-G2 phase) after a 'priming' UVA treatment on stationary (G1) phase cells. Such experiments showed a bypass of mono-adducts in an excision-deficient context for at least one round of DNA replication.
    [Abstract] [Full Text] [Related] [New Search]