These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Partial characterization of an endogenous inhibitor of a calcium-dependent form of insulin protease.
    Author: Ryan MP, Duckworth WC.
    Journal: Biochem Biophys Res Commun; 1983 Oct 14; 116(1):195-203. PubMed ID: 6357196.
    Abstract:
    Insulin protease activity has resisted high-yield purification to homogeneity, due to its low amount in tissues, its instability, and its erratic recovery from several types of chromatography. This report outlines the preliminary characterization of a naturally-occurring insulin protease inhibitor that accounts for some of these problems in rat skeletal muscle. In these experiments, inhibitory activity was assayed by its effect upon hydrolysis of 125I-(A14)-insulin by the partially purified insulin protease activity of rat skeletal muscle cytosol. During Sephadex G-200 chromatography of cytosol at pH 7.5, inhibitory activity copurifies with insulin protease activity, and the incomplete resolution of the two activities contributes to the impression that insulin protease exists in distinct 180,000-dalton and 80,000-dalton forms. By contrast, during DEAE-Sephacel chromatography of cytosol at pH 7.5, inhibitory activity and insulin protease activity are resolved by eluting the resin with 50 mM NaCl and 200 mM NaCl, respectively. Post-DEAE-Sephacel inhibitor has an Mr(app) of 67,000 daltons or 80,000-120,000 daltons, as determined by high-performance liquid chromatography or Sephadex G-150 chromatography, respectively. Post-DEAE-Sephacel insulin protease activity exhibits a Km for insulin of 15 nM and resides in a 200,000-dalton neutral thiol protease which requires 50 micromolar calcium for its maximum insulin-degrading activity. The inhibitor reduces the enzyme's activity reversibly, nonprogressively, and non-competitively with respect to insulin, but it does not alter the enzyme's sensitivity to calcium ion. These observations suggest that calcium and an endogenous protease inhibitor may influence cellular degradation of insulin via previously unrecognized effects upon cytosolic insulin protease activity.
    [Abstract] [Full Text] [Related] [New Search]