These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of action of 1,25-dihydroxyvitamin D3-induced stimulation of alkaline phosphatase in cultured osteoblast-like cells.
    Author: Manolagas SC, Spiess YH, Burton DW, Deftos LJ.
    Journal: Mol Cell Endocrinol; 1983 Nov; 33(1):27-36. PubMed ID: 6357897.
    Abstract:
    1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] stimulates the alkaline phosphatase of rat and human osteoblast-like cells in culture. Here the mechanism of this effect was investigated using the rat osteogenic sarcoma cell line ROS 17/2-8. We found that 50% maximum alkaline phosphatase stimulation is elicited by 1,25(OH)2D3 at 7 X 10(-10) M. The concentration of serum in the culture medium influences inversely the effective 1,25(OH)2D3 concentration. Increased alkaline phosphatase appears after a lag period of cell exposure to 1,25(OH)2D3 which is between 8 and 24 h; during 96 h culture in the presence of 1,25(OH)2D3 the enzyme activity continues to rise. Cycloheximide (0.1-1 micrograms/ml) added in the cultures for 3 days or actinomycin-D (1-30 ng/ml) added for 24 h inhibit the 1,25(OH)2D3 effect on alkaline phosphatase in a dose-dependent fashion; withdrawal of cycloheximide restores the responsiveness of cells to 1,25(OH)2D3 completely, but withdrawal of actinomycin-D restores cell responsiveness only partially. These findings suggest that 1,25(OH)2D3-induced stimulation of alkaline phosphatase in the osteoblast-like cells involves genome activation and de novo protein synthesis.
    [Abstract] [Full Text] [Related] [New Search]