These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose.
    Author: Sprenger GA, Lengeler JW.
    Journal: J Bacteriol; 1984 Jan; 157(1):39-45. PubMed ID: 6361004.
    Abstract:
    L-Sorbose degradation in Klebsiella pneumoniae was shown to follow the pathway L-sorbose leads to L-sorbose-1-phosphate leads to D-glucitol-6-phosphate leads to D-fructose-6-phosphate. Transport and phosphorylation of L-sorbose was catalyzed by membrane-bound enzyme IIsor of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system, specific for and regulated by this ketose and different from all other enzymes II described thus far. Two soluble enzymes, an L-sorbose-1-phosphate reductase and a D-glucitol-6-phosphate dehydrogenase, were involved in the conversion of L-sorbose-1-phosphate to D-fructose-6-phosphate. This dehydrogenase was temperature sensitive, preventing growth of wild-type strains of K. pneumoniae at temperatures above 35 degrees C in the presence of L-sorbose. The enzyme was distinct from a second D-glucitol-6-phosphate dehydrogenase involved in the metabolism of D-glucitol. The sor genes were transferred from the chromosome of nonmotile strains of K. pneumoniae by means of a new R'sor+ plasmid to motile strains of Escherichia coli K-12. Such derivatives not only showed the temperature-sensitive Sor+ phenotype characteristic for K. pneumoniae or Sor+ wild-type strains of E. coli, but also reacted positively to sorbose in chemotaxis tests.
    [Abstract] [Full Text] [Related] [New Search]