These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physical, chemical and functional changes following platelet activation in normal and "giant" platelets. Author: Frojmovic MM, Milton JG. Journal: Blood Cells; 1983; 9(2):359-82. PubMed ID: 6362754. Abstract: Unactivated discocytes in healthy human donors have mean volumes of approximately 6.0 microns3 (range 3.8-7.5 microns3), while mean values for similarly-shaped discocytes obtained from donors with the hereditary "giant" platelet syndromes were either normal (one Bernard-Soulier syndrome (BSS) and all five members of a family with the Montreal platelet syndrome (MPS) or, on average, up to twice normal (range 6.4-13.8 microns3). This apparent heterogeneity is complicated by the much more consistent and significant observation that both BSS and MPS platelets undergo a defective hypervolumetric shape change following activation which is prolonged indefinitely, in contrast to a transient hypervolumetric change measureable in 1-5 s following ADP addition to normal platelets. It is suggested that the hypervolumetric shape change in both normal and "giant" platelets is accompanied by an increase in externalized plasma membrane surface area, with the most probable source being surface-connected canalicular system. Membrane glycoprotein I abnormalities were not detectable in platelets for 2/3 sibling MPS donors. The precise relation of these membrane changes to altered platelet functions is compared for normal and "giant" platelets, but largely remains to be experimentally determined. Early shape change appears tightly associated with early microscopically-measured aggregation (PA), with both PA and turbidimetrically-measured macroaggregation generally appearing normal to elevated for "giant" platelets.[Abstract] [Full Text] [Related] [New Search]