These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biology of collagen-proteoglycan interaction.
    Author: Junqueira LC, Montes GS.
    Journal: Arch Histol Jpn; 1983 Dec; 46(5):589-629. PubMed ID: 6370189.
    Abstract:
    The purpose of this article is to review our knowledge to date of collagen-proteoglycan interaction. Many topics have been taken into account in order to provide a reasonably complete picture of this highly complex subject. Basic information about collagen biology, and an overview of the current concepts and advances regarding proteoglycans, have served as a basis to elucidate collagen-proteoglycan interaction. The bases of some methods of study have been reviewed in order to provide a fuller understanding of the results that are cited in this article. The experimental models and biological examples discussed herein demonstrate that collagen-proteoglycan interaction is essential to the extracellular matrix resiliency. The organization of these macromolecules is critical: collagen molecules become assembled into fibrils, fibrils aggregate to form fibers, fibers associate into bundles of fibers, and proteoglycans in the ground substance play a major role in the ordering process; on the other hand, glycosaminoglycans (GAGs) are composed of repeating monomers--GAGs linked to a same protein core form a proteoglycan--which, in turn, may bind to a hyaluronic acid molecule to form a proteoglycan aggregate together with other proteoglycans. Further growth of these complex macromolecules at higher hierarchical levels occurs by interaction of collagen with proteoglycans. A striking correlation between the tissue distribution of the genetically-distinct types of interstitial collagen and the occurrence of the different GAGs (which argues strongly in favour of a specific interaction) is demonstrated comprehensively in this review. Tissues composed of collagen type I possess small amounts of proteoglycans which contain almost exclusively dermatan sulfate; while tissues containing only collagen type II have high amounts of chondroitin sulfates. Collagen type III is the major fibrillary constituent of tissues that possess intermediate levels of proteoglycans, which contain great amounts of heparan sulfate. The histochemical and ultrastructural equivalents of these interactions have been emphasized in order to permit an interpretation of the morphologic aspects that can contribute to distinguishing these macromolecular components when studying tissue sections either under the light microscope or by aid of electron microscopy.
    [Abstract] [Full Text] [Related] [New Search]