These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constitutive activation of L-fucose genes by an unlinked mutation in Escherichia coli.
    Author: Chen YM, Chakrabarti T, Lin EC.
    Journal: J Bacteriol; 1984 Aug; 159(2):725-9. PubMed ID: 6378890.
    Abstract:
    Wild-type Escherichia coli cannot grow on L-1,2-propanediol; mutants that can do so have increased basal activity of an NAD-linked L-1,2-propanediol oxidoreductase. This enzyme belongs to the L-fucose system and functions normally as L-lactaldehyde reductase during fermentation of the methylpentose. In wild-type cells, the activity of this enzyme is fully induced only anaerobically. Continued aerobic selection for mutants with an improved growth rate on L-1,2-propanediol inevitably leads to full constitutive expression of the oxidoreductase activity. When this occurs, L-fuculose 1-phosphate aldolase concomitantly becomes constitutive, whereas L-fucose permease, L-fucose isomerase, and L-fuculose kinase become noninducible. It is shown in this study that the noninducibility of the three proteins can be changed by two different kinds of suppressor mutations: one mapping external to and the other within the fuc gene cluster. Both mutations result in constitutive synthesis of the permease, the isomerase, and the kinase, without affecting synthesis of the oxidoreductase and the aldolase. Since expression of the fuc structural genes is activated by a protein specified by the regulator gene fucR, and since all the known genes of the fuc system are clustered at minute 60.2 of the chromosome, the external gene in which the suppressor mutation can occur probably has an unrelated function in the wild-type strain. The internal suppressor mutation might be either in fucR or in the promoter region of the genes encoding the permease, the isomerase, and the kinase, if these genes belong to the same operon.
    [Abstract] [Full Text] [Related] [New Search]