These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental changes in unique cell surface antigens of chick embryo spinal motoneurons and ganglion cells. Author: Tanaka H, Obata K. Journal: Dev Biol; 1984 Nov; 106(1):26-37. PubMed ID: 6386573. Abstract: The monoclonal antibody technique was used to investigate neuronal heterogeneity and its developmental changes in the chick embryo trunk especially at the thoracic level. We report here four monoclonal antibodies (called SC 1, SC 2, SC 3, and SC 4) that bound to cell surface antigens. These antigens appeared to be proteins or glycoproteins because of their susceptibility to trypsin. In the spinal cord, antibody SC 3 stained all cells, but antibody SC 1 specifically stained motoneurons and ventral epithelial cells. The staining of motoneurons by antibody SC 1 was transient. It appeared at early stages (stage 16-17; Hamburger and Hamilton), but decreased markedly in intensity at older stages (stage 30-31). Antibody SC 2 did not stain cells in the spinal cord. It stained only neurons in the dorsal root and sympathetic ganglia. Antibody SC 4 stained only cells derived from the neural crest at the early stages (stage 16-20). At later stages, it stained a wider population of cells, including sensory neurons, Schwann cells, and cells in the central nervous system. In the dorsal root ganglion, antibodies SC 1 and SC 2 stained only neuronal cells whereas antibodies SC 3 and SC 4 stained both neuronal and glial cells. The dorsal root ganglionic antigens recognized by these antibodies were not expressed concurrently but appeared in a developmental sequence. Staining with antibodies SC 3 and SC 4 appeared first, then SC 1, and finally SC 2. Among these four antigens, the antigens common to both neuronal and glial cells appeared earlier than the neuron specific antigens. Thus, our monoclonal antibodies revealed heterogeneities in cell surface neuronal molecules and their transient and sequential appearance during embryonic development.[Abstract] [Full Text] [Related] [New Search]