These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule.
    Author: Crossin KL, Edelman GM, Cunningham BA.
    Journal: J Cell Biol; 1984 Nov; 99(5):1848-55. PubMed ID: 6386828.
    Abstract:
    The sialic-rich carbohydrate moiety of the neural cell adhesion molecule (N-CAM) undergoes major structural changes during development and plays a significant role in altering the homophilic binding of the molecule. In order to understand the mechanism of these changes, a cyanogen bromide (CNBr) fragment that contained 90% of the sialic acid of N-CAM was isolated and characterized according to the number of carbohydrate attachment sites and reactivity with specific monoclonal antibodies. The CNBr sialopeptide migrated on SDS PAGE as a broad zone of Mr 42,000-60,000. Upon treatment with neuraminidase, it was converted to a single component of Mr 42,000, and subsequent, limited treatment with endoglycosidase F gave four evenly spaced components of Mr 35,000-42,000, suggesting that it contained three attachment sites for N-linked oligosaccharides. The fragment reacted with monoclonal antibody 15G8, which detects the sialic acid in embryonic N-CAM, and with a monoclonal antibody, anti-(N-CAM) No. 2. Treatment with neuraminidase or with endoglycosidase F destroyed reactivity with 15G8 but not with anti-(N-CAM) No. 2. A similar CNBr sialopeptide was obtained from adult N-CAM; it contained sialic acid, had three N-linked oligosaccharides and reacted with anti-(N-CAM) No. 2 but not with 15G8 monoclonal antibodies. A peptide fragment, Fr2, comprising the NH2 terminal and middle regions of the molecule yielded a CNBr fragment closely similar to the fragment obtained from the whole molecule. The CNBr fragment from Fr2 reacted with monoclonal antibody anti-(N-CAM) No. 2. Fr1, comprising the NH2 terminal region alone, failed to react. These data confirm that the majority of the sialic acid is localized in the middle region of the N-CAM molecule and support the hypothesis that embryonic to adult conversion of N-CAM is the result of differences in sialidase or sialytransferase activity.
    [Abstract] [Full Text] [Related] [New Search]