These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin receptors: binding kinetics and structure-function relationship of insulin.
    Author: Gammeltoft S.
    Journal: Physiol Rev; 1984 Oct; 64(4):1321-78. PubMed ID: 6387730.
    Abstract:
    During the last decade, earlier suggestions that insulin acts at the plasma membrane level via combination with receptors have been amply confirmed in studies of 125I-labeled insulin binding kinetics. Efforts have been devoted to the development of homogeneous, stable, and bioactive tracers, and a preparation of monoiodo[TyrA14]insulin showed 100-125% biological activity. The initially simple model of reversible, bimolecular, and noncooperative interaction between receptor and insulin has been revised to include the existence of at least three affinity states that may be linked to modulation of the biological response induced by the insulin-receptor complex. Thus negative cooperativity seems important in reducing oscillations of insulin action with variations in plasma insulin concentration, and formation of a high-affinity state or positive cooperativity may lead to desensitization of receptors. The kinetic phenomena suggest that receptor-binding affinity and function are actively regulated by insulin itself. At present the receptor model is purely functional and does not imply molecular mechanisms. However, recent advances in the analysis of receptor structure and biochemistry promise that the molecular equivalents of the kinetic phenomena may be elucidated in the near future. Furthermore the reaction between receptor and insulin is irreversible because of degradation of receptor-bound insulin, which may result in termination of the metabolic activation. Morphological and biochemical work suggests that internalization of the receptor-insulin complex from the plasma membrane transfers insulin to intracellular organelles like the lysosomes, the Golgi apparatus, or nucleus, where degradation by insulin protease takes place, whereas the receptor is recycled back to the membrane. Recent advances in the studies of biosynthesis and cellular dynamics of receptors indicate that intracellular processing and redistribution of binding sites may play a role in the mechanism of insulin action. Insulin receptors are widely distributed in all cell types, but evidence has accumulated that receptors show tissue and species variations in their functional properties regarding binding affinity, insulin specificity, cooperativity, and insulin degradation and in structural properties such as antigenic determinants and glycosidic composition. Perhaps these differences reflect cellular adaptations and variations in the physiological role of insulin.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]