These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Energy metabolism of Ehrlich ascites cancer cells]. Author: del Pozo AM, Valladares Y, Alvarez Rodríguez Y. Journal: Rev Esp Oncol; 1983; 30(4):539-58. PubMed ID: 6400622. Abstract: Cell respiration (CR) and glycolysis (GL) are the main sources cell energy, since along their metabolic pathways ATP is produced. Expressed as microM/100 mg/h, normal cells produce 63 by CR, 0.2 by aerobic GL, and 9.37 by anaerobic GL, while cancer cells produce 35 by CR, 18 by aerobic GL, and 29 by anaerobic GL. The ascites fluid from EAC increases the anaerobic GL to 38, while it does not change the aerobic GL to 7 and diminishes the CR to 26. Insulin produces a lowering of CR to 26, aerobic GL to 26 and anaerobic GL to 22. Glucose inhibits CR and stimulates GL. Ribose does not modify CR and inhibits GL. Mannose inhibits both CR and GL. Ribonuclease increases GL in the presence of glucose but not of ribose. Glucose-phosphate and ribose-phosphate have no action because they do not enter into the cell. Expressed as QLN2/100 mg, the main localization of GL is the cytosol (480), but it is significant in the nucleus (170), and diminishes in microsomes (100) and mitochondria (52). Mitochondria inhibit the cytosol glycolytic activity when they are either in the usual proportion they have in the cell or in a higher proportion. It is curious the observation that a diminution of the relative concentration of mitochondria with regard to cytosol (1/100 to 1/1000) produces a marked increase of GL. The addition of nuclear fraction stabilizes the cytosol-mitochondria complex and modifies the metabolic pathway of the CO2 that is produced during the GL.[Abstract] [Full Text] [Related] [New Search]