These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and characterization of two aldose reductase isoenzymes from rabbit muscle. Author: Cromlish JA, Flynn TG. Journal: J Biol Chem; 1983 Mar 10; 258(5):3416-24. PubMed ID: 6402510. Abstract: Using a modification of the procedure of Kormann et al. (Kormann, A. W., Hurst, R. O., and Flynn, T. G. (1972) Biochim. Biophys. Acta 258, 40-55) for the purification of glycerol dehydrogenase, two enzymes have been purified from the skeletal muscle of male rabbits. From a consideration of their properties these enzymes have been named aldose reductase 1 and aldose reductase 2, respectively. Both enzymes are monomeric by the criteria of gel filtration and polyacrylamide gel electrophoresis in sodium dodecyl sulfate and both reductases are immunologically identical as shown by double immunodiffusion and rocket immunoelectrophoresis. Aldose reductases 1 and 2 have almost identical amino acid compositions, their NH2 termini are blocked and the COOH termini of both enzymes are apparently identical. The enzymes differ, however, in molecular weight with aldose reductase 2 having Mr = 41,500 and aldose reductase 1 Mr 40,200. Both enzymes have the broad substrate specificity typical of the aldehyde reductase family of enzymes; Km values of aldose reductase 1 for aldo sugars were similar to those reported for rabbit lens aldose reductase, and both aldose reductase 1 and 2 were inhibited by the commercial aldose reductase inhibitors Alrestatin and Sorbinil. Two aldose reductases, immunologically and electrophoretically identical to the muscle enzymes, were found in rabbit lens. Two aldose reductases were also detected in the skeletal muscle of male rats and pigs and in pig and bovine lens. The presence of relatively large amounts of aldose reductase in muscle identifies a new and rich source of the enzyme.[Abstract] [Full Text] [Related] [New Search]