These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route. Author: Farquhar MG. Journal: Fed Proc; 1983 May 15; 42(8):2407-13. PubMed ID: 6404654. Abstract: A number of pathways for intracellular membrane traffic have been detected in various cell types. The major established routes are: 1) the lysosomal pathway, which is the major route utilized in phagocytic and cultured cells; 2) the transcellular route, which represents the major type of traffic in nonfenestrated, capillary endothelial cells and which also appears to be the preferred route for the transport of immunoglobulins (intact) across cells; 3) the exocytosis pathway, utilized in secretory cells for discharge of secretory products, and which is also believed to be used for delivery of intrinsic membrane glycoproteins; 4) the plasmalemma to Golgi route, also highly developed in secretory cells, which is believed to be utilized for the recycling of secretory granule membranes; and 5) the biosynthetic pathways for transport of secretory products, lysosomal enzymes, and membrane proteins from the endoplasmic reticulum to the Golgi complex and for transport of lysosomal enzymes from the Golgi complex to lysosomes. It has become clear that cells repeatedly reutilize or recycle the membranes used in these various transport operations. Clathrin-coated vesicles have been found to be involved in transport along all these routes, which suggests that there are multiple populations of coated vesicles with different transport functions in every cell. It has become clear that the Golgi complex is the site where the membrane and product traffic converges and is sorted and directed to its correct destinations. The validation of a transport route from the cell surface to the Golgi complex raises the possibility that bound ligands and membrane constituents could be modified or repaired in transit during recycling through the Golgi complex, which is a biosynthetic compartment.[Abstract] [Full Text] [Related] [New Search]