These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cold stress induces in situ phospholipid molecular species changes in cell surface membranes. Author: Ramesha CS, Thompson GA. Journal: Biochim Biophys Acta; 1983 Jun 10; 731(2):251-60. PubMed ID: 6405786. Abstract: The structural organization of Tetrahymena pyriformis is such that its cilia are remote from the main centers of lipid metabolism. As a result, the ciliary membrane lipid composition of cells exposed to low-temperature stress is initially unaffected by the significant metabolic changes induced in microsomal membranes. Nevertheless, changes in the ciliary membrane lipid composition can be detected during the first 4 h of cold exposure. A combination of in vivo and in vitro experiments has provided strong evidence for a substantial retailoring of ciliary phospholipid molecular species in situ in the absence of any importation of lipids from the cell interior or change in overall ciliary fatty acid composition. The mechanism responsible for the ciliary lipid changes is independent of the one(s) triggering internal acclimation responses. Our observations establish for the first time that chilling stress can simultaneously induce separate and distinctive lipid modification responses in different parts of a cell. This finding could be important in identifying the molecular 'sensor' capable of actuating stress-induced lipid changes.[Abstract] [Full Text] [Related] [New Search]