These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced cross-linking.
    Author: Gut J, Richter C, Cherry RJ, Winterhalter KH, Kawato S.
    Journal: J Biol Chem; 1983 Jul 25; 258(14):8588-94. PubMed ID: 6408090.
    Abstract:
    Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles by a cholate dialysis technique. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme X CO complex by a vertically polarized laser flash. All cytochrome P-450 was found to be rotationally mobile when co-reconstituted with equimolar amounts of NADPH-cytochrome P-450 reductase in lipid to cytochrome P-450 ((L/P450)) = 1 (w/w] vesicles. Antibodies against NADPH-cytochrome P-450 reductase were raised. Their specificity was demonstrated by Ouchterlony double diffusion analysis. Antireductase Fab fragments were prepared from antireductase IgG by papain digestion. The N-demethylation of benzphetamine, catalyzed by the proteoliposomes, was significantly inhibited by antireductase IgG and by antireductase Fab fragments. Cross-linking of NADPH-cytochrome P-450 reductase by antireductase IgG resulted in complete immobilization of cytochrome P-450 in L/P450 = 1 vesicles. Antireductase IgG also immobilized cytochrome P-450 in L/P450 = 5 vesicles, although the degree of immobilization was slightly smaller. No immobilization of cytochrome P-450 in L/P450 = 1 vesicles was detected in the presence of antireductase Fab fragments or preimmune IgG. These results further support the proposal of the formation of monomolecular complexes between cytochrome P-450 and NADPH-cytochrome P-450 reductase in liposomal membranes (Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1982) J. Biol. Chem. 257, 7030-7036).
    [Abstract] [Full Text] [Related] [New Search]