These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of the PO2 temperature blood factor from oxygen dissociation curves. Author: Hérigault RA, Soulard CD, Teisseire BP, Laurent DN. Journal: Bull Eur Physiopathol Respir; 1983; 19(3):285-92. PubMed ID: 6411156. Abstract: The variation with saturation of the temperature coefficient of PO2 in human blood (delta log PO2/delta T) was determined by continuous recording of the oxygen dissociation curve (ODC), at 37 degrees C and 25 degrees C, on the same blood samples. PCO2 and pH were held constant through an ODC run, and PCO2 was reduced at 25 degrees C to the value measured by anaerobic cooling of the same sample. delta log PO2/delta T was calculated from isosaturation points on the 37 and 25 degrees C curves. The temperature coefficient was also computed as an independent check on this method by determination of the effects of temperature (25, 30, 37 and 40 degrees C) on hemoglobin ligand interaction: fixed acid Bohr effect (delta log PO2/delta pH), carbamino-formation (delta log PO2/delta log PCO2) and hemoglobin oxygen affinity. The values of delta log PO2/delta T ratio obtained from the two different approaches were found to be in good agreement. The coefficient decreased when [H+] concentration was increased. A linear relationship between the Bohr factor and the temperature was found: delta log PO2/delta pH = 0.00267 T-0.520 (r = 0.85; n = 40) At 25 degrees C, the carbamino-formation was one order of magnitude lower than at 37 degrees C. Acid-base state and saturation value appeared to be major determinant factors for the temperature correction coefficient to be applied to blood PO2 values measured at standard (37 degrees C) temperature.[Abstract] [Full Text] [Related] [New Search]