These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants. A new approach to estimating in vivo carbonic anhydrase activity.
    Author: Holtum JA, Summons R, Roeske CA, Comins HN, O'Leary MH.
    Journal: J Biol Chem; 1984 Jun 10; 259(11):6870-81. PubMed ID: 6427227.
    Abstract:
    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with 13C18O2 , then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the [13C] malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance (using the oxygen-18 effect on the carbon-13 chemical shift of the carboxyl carbon) or by mass spectrometry (comparing the ions at three and five units above the molecular weight with that one unit above). Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO-3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum , 40 for Kalancho ë daigremontiana , and 100 or greater for Bryophyllum tubiflorum , Kalancho ë serrata, and Kalancho ë tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature.
    [Abstract] [Full Text] [Related] [New Search]