These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adhesion site composition of murine fibroblasts cultured on gelatin-coated substrata. Author: Haas R, Banerji SS, Culp LA. Journal: J Cell Physiol; 1984 Aug; 120(2):117-25. PubMed ID: 6430917. Abstract: Fibroblasts in vivo adhere to a collagenous extracellular matrix. We present here a combined morphological and biochemical analysis of the adhesion sites of fibroblast-like cells cultured in vitro on gelatin-coated plastic, for comparison with earlier model studies using serum (plasma-fibronectin [pFn])-coated plastic. Scanning electron microscopy shows that cell adhesion to the gelatin is quite similar to that on plastic, but with some morphological differences reminiscent of those caused by higher concentrations of fibronectin adsorbed to the substratum. Measurement using 125I-radiolabeled pFn shows the level of substratum-bound pFn adsorbed from serum in the growth medium is, however, comparable on gelatin or plastic; thus, differences due to pFn must be attributed to the quality of the adsorbed protein; not its absolute quantity. Gel electrophoretic analysis of cellular adhesion sites formed on the two substrata shows their compositions to be qualitatively similar, suggesting again that the same fundamental adhesion processes are involved. However, three protein bands do change; notably, cellular fibronectin is increased on gelatin. These three proteins are also the most resistant to saline extraction, suggesting their intrinsic importance in the adhesion sites. The nature of the growth substratum thus appears to modulate a fundamentally unvarying morphology and adhesion site composition of the cells that adhere to it.[Abstract] [Full Text] [Related] [New Search]