These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Androgen synthesis during follicular development: evidence that rat granulosa cell 17-ketosteroid reductase is independent of hormonal regulation.
    Author: Bogovich K, Richards JS.
    Journal: Biol Reprod; 1984 Aug; 31(1):122-31. PubMed ID: 6432069.
    Abstract:
    Although androgens have been implicated in follicular atresia, ovarian follicular androgen synthesis is required for preovulatory follicular growth. To localize the site(s) of androgen biosynthesis and to obtain a better understanding of the regulation of the androgenic pathway(s) in rat ovarian follicles we examined the relative abilities of developing follicles to accumulate specific androgens [testosterone (T) and dihydrotestosterone (DHT)] using both radioimmunoassay (RIA) and 3H-substrate metabolism techniques. Small antral and preovulatory follicles were obtained from control or human chorionic gonadotropin (hCG)-primed immature rats, respectively (Richards and Bogovich, 1982). Small antral follicles, theca and granulosa cells produced little immunoassayable androgen (T + DHT) when incubated with or without 8-bromo-cAMP. In contrast, preovulatory follicles and theca produced more androgen than small antral tissues and in a manner acutely stimulable by cAMP. Granulosa cells produced little androgen under these conditions. Inclusion of [3H] androstenedione in the incubates yielded increased accumulation of [3H] T and [3H] DHT for all small antral and preovulatory tissues. Indeed, granulosa cells from both small antral and preovulatory follicles possessed a remarkable ability to accumulate [3H] T. This ability was not altered by hypophysectomy or subsequent treatment with estradiol and/or follicle-stimulating hormone (FSH). These results suggest that 17-ketosteroid reductase may be a constitutive enzyme in granulosa cells.
    [Abstract] [Full Text] [Related] [New Search]