These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oocyte adenylyl cyclase contains Ni, yet the guanine nucleotide-dependent inhibition by progesterone is not sensitive to pertussis toxin.
    Author: Olate J, Allende CC, Allende JE, Sekura RD, Birnbaumer L.
    Journal: FEBS Lett; 1984 Sep 17; 175(1):25-30. PubMed ID: 6434346.
    Abstract:
    Membranes were obtained from Xenopus laevis oocytes after removal of follicular cells by collagenase treatment. [32P]ADP-ribosylation with pertussis toxin showed them to contain a single Mr = 40000 substrate for this toxin that co-migrates on sodium dodecylsufate-polyacrylamide gel electrophoresis with pure human erythrocyte Ni, the inhibitory regulatory component of adenylyl cyclase. [32P]ADP-ribosylation of oocyte membranes with cholera toxin also showed presence of a single substrate but of Mr = 42000. These results indicate, that the adenylyl cyclase system of oocytes, like that of somatic cells and unlike that of spermatozoids, contains the catalytic unit C and both of the known regulatory N components. The possible susceptibility to pertussis toxin of the guanine nucleotide-dependent inhibition of oocyte adenylyl cyclase by progesterone was investigated. This action of progesterone is mediated by a membrane bound receptor as opposed to a receptor of cytosolic or nuclear localization. However, the inhibitory effect of progesterone was unaffected by pertussis toxin, even though the oocyte membrane Ni was fully ADP-ribosylated with pertussis toxin, as revealed by lack of further [32P]ADP-ribosylation on subsequent re-incubation with pertussis toxin. These results indicate that the action of progesterone, in spite of being nucleotide-dependent, is either not mediated by Ni, suggesting the existence of an additional nucleotide regulatory component, or if mediated by Ni, involves a mode of regulation of this coupling protein that is different from that by which all other inhibitory hormones act on adenylyl cyclase.
    [Abstract] [Full Text] [Related] [New Search]