These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferential binding of steroids by anionic forms of rat glutathione S-transferase. Author: Maruyama H, Listowsky I. Journal: J Biol Chem; 1984 Oct 25; 259(20):12449-55. PubMed ID: 6436234. Abstract: Rat liver glutathione S-transferases with isoelectric points near 6.7 were resolved from more basic forms of the protein. This anionic fraction represented about 30% of the total activity in liver with 1-chloro-2,4-dinitrobenzene and was the preponderant form utilizing trans-4-phenyl-3-butene-2-one as a substrate. The anionic transferases are dimeric proteins composed of two subunits designated as Yb and were distinguished from the cationic transferases on the basis of structural, immunological, and binding properties. Amino acid compositions and immunological properties of the anionic protein were similar to those of glutathione S-transferases A and C. The anionic forms had substantially less ordered secondary structure than cationic forms composed of subunits Ya and Yc. Stoichiometric ratios of two high affinity binding sites per dimer, also differentiated between the anionic and all of the cationic transferases which bind only a single mole of ligand. Affinity matrices composed of corticosterone or cholate, and circular dichroism methods, were used to demonstrate selective binding of steroids and bile acids to the anionic glutathione S-transferases. Glucocorticoids and progestins were shown to bind with high affinity whereas estrogens were bound at distinct lower affinity sites. In contrast to the cationic transferases, glutathione had no effect on binding of the steroids to the anionic forms, which suggested that these proteins have the capacity to bind these substances even in a milieu with high concentrations of glutathione.[Abstract] [Full Text] [Related] [New Search]