These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca2+ concentrations to hormone secretion. Selective blockade using ionomycin and nifedipine.
    Author: Albert PR, Tashjian AH.
    Journal: J Biol Chem; 1984 Dec 25; 259(24):15350-63. PubMed ID: 6439720.
    Abstract:
    In clonal rat pituitary cells (GH cells), thyrotropin-releasing hormone (TRH) induced a pattern of changes in cytosolic free calcium concentrations [( Ca2+]i) composed of two phases: an acute spike phase to micromolar levels which decayed (t1/2 = 8 s) to a near-basal concentration and then rose to a prolonged plateau phase of elevated [Ca2+]i (as measured using Quin 2). Closely following these changes in [Ca2+]i, TRH stimulated a rapid "spike phase" of pronounced, but brief, enhancement of the rate of prolactin and growth-hormone secretion and then a "plateau phase" of prolonged enhancement. These two phases were dissociated using two classes of pharmacologic agents: the ionophore ionomycin, and a calcium channel antagonist nifedipine. Ionomycin (100 nM) specifically blocked (less than 90%) the spike phase of TRH action by rapidly emptying the TRH-regulated reservoir of cellular Ca2+ to generate a TRH-like spike in [Ca2+]i; nifedipine inhibited (less than 50%) the plateau phase of TRH-induced changes in [Ca2+]i and hormone secretion by preventing Ca2+ influx through voltage-dependent Ca2+ channels. These agents demonstrated that the TRH-induced spike in [Ca2+]i in GH cells is caused by release of an ionomycin-sensitive pool of cellular Ca2+ with a small component (10%) due to influx of extracellular Ca2+. The TRH-induced plateau in [Ca2+]i is due to influx of extracellular Ca2+, about half of which enters through voltage-dependent calcium channels and half of which enters via nifedipine/verapamil-insensitive influx. The TRH-induced spike in [Ca2+]i led to a burst in hormone secretion, and the plateau in [Ca2+]i produced a prolonged enhancement of secretion; the spike and plateau phases were generated independently by TRH. A spike in [Ca2+]i is necessary, but not sufficient, to induce burst release of hormone, while the prolonged rate of hormone secretion is intimately related to the steady-state [Ca2+]i.
    [Abstract] [Full Text] [Related] [New Search]