These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling factor F1 ATPase with defective beta subunit from a mutant of Escherichia coli. Author: Kanazawa H, Horiuchi Y, Takagi M, Ishino Y, Futai M. Journal: J Biochem; 1980 Sep; 88(3):695-703. PubMed ID: 6448252. Abstract: The defective coupling factor F1 ATPase from a mutant strain (KF11) of Escherichia coli was purified to a practically homogeneous form. The final specific activity of Mg2+-ATPase was 6-9 units/mg protein, which is about 10-15 times lower than that of F1 ATPase from the wild-type strain. The mutant F1 had a ratio of Ca2+-ATPase to Mg2+-ATPase of about 3.5, whereas the wild-type F1 had ratio of about 0.8. The mutant F1 was more unstable than wild-type F1: on storage at -80 degrees C for 2 weeks, about 80% of its activity (dependent on Ca2+ or Mg2+) was lost, whereas none of the activity of the wild-type F1 was lost. The following results indicate that the mutation is in the beta subunit. (i) High Mg2+-ATPase activity (about 20 units/mg protein) was reconstituted when the beta subunit from wild type F1 was added to dissociated mutant F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. (ii) Low ATPase activity having the same ratio of Ca2+-ATPase to Mg2+-ATPase as the mutant F1 was reconstituted when a mixture of the beta subunit from the mutant F1 and the alpha and gamma subunits from wild-type F1 was dialyzed against the same buffer. (iii) Tryptic peptide analysis of the beta subunit of the mutant showed a difference in a single peptide compared with the wild-type strain.[Abstract] [Full Text] [Related] [New Search]