These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin.
    Author: Jordan RE, Oosta GM, Gardner WT, Rosenberg RD.
    Journal: J Biol Chem; 1980 Nov 10; 255(21):10081-90. PubMed ID: 6448846.
    Abstract:
    The kinetics of inhibition of four hemostatic system enzymes by antithrombin were examined as a function of heparin concentration. Plots of the initial velocity of factor Xa-antithrombin or plasmin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb and subsequent plateau regions. In each case, the kinetic profile is closely correlated with the concentration of the heparin . antithrombin complex formed within the reaction mixture. A decrease in the velocity of inhibition is not observed at high levels of added mucopolysaccharide despite the generation of significant quantities of heparin-enzyme interaction products. The second-order rate constants for the neutralization of factor Xa or plasmin by the mucopolysaccharide . inhibitor complex are 2.4 x 10(8) M-1 min-1 and 4.0 x 10(6) M-1 min-1, respectively. These parameters must be contrasted with the similarly designated constants obtained in the absence of heparin which are 1.88 x 10(5) M-1 min-1 and 4.0 x 10(4) M-1 min-1, respectively. Plots of the initial velocity of the factor IXa-antithrombin or the thrombin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb, pseudoplateau, descending limb, and final plateau regions. In each case, the ascending limb and pseudoplateau are closely correlated with the concentration of heparin c antithrombin complex formed within the reaction mixture. Furthermore, the descending limb and final plateau of these two processes coincide with the generation of increasing amounts of the respective mucopolysaccharide-enzyme interaction products. The second-order rate constants for the neutralization of factor IXa or thrombin by the heparin . antithrombin complex are 3.0 x 10(8) M-1 min-1 and 1.7 x 10(9) M-1 min-1, respectively. The second-order rate constants for the inhibition of mucopolysaccharide-factor IXa or mucopolysaccharide-thrombin interaction products by the heparin . antithrombin complex are 2.0 x 10(7) M-1 min-1 and 3.0 x 10(8) M-1 min-1, respectively. These kinetic parameters must be contrasted with similarly designated constants obtained in the absence of mucopolysaccharide which are 2.94 x 10(4) M-1 min-1 and 4.25 x 10(5) M-1 min-1, respectively. Thus, our data demonstrate that binding of heparin to antithrombin is required for the mucopolysaccharide-dependent enhancement in the rates of neutralization of thrombin, factor IXa, factor Xa, or plasmin by the protease inhibitor. Furthermore, a careful comparison of the various constants suggests that the direct interaction between heparin and antithrombin may be largely responsible for the kinetic effect of this mucopolysaccharide.
    [Abstract] [Full Text] [Related] [New Search]