These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: lambda altSF: a phage variant that acquired the ability to substitute specific sets of genes at high frequency. Author: Friedman D, Tomich P, Parsons C, Olson E, Deans R, Flamm E. Journal: Proc Natl Acad Sci U S A; 1981 Jan; 78(1):410-4. PubMed ID: 6454136. Abstract: We report the isolation of lambda altSF, a variant of Escherichia coli phage lambda that substitutes sets of genes at high frequency. Two forms of the variant phage have been studied: lambda altSF lambda, which exhibits the immunity (repressor recognition) of phage lambda, and lambda altSF22, which exhibits the immunity of Salmonella phage P22. Lysates made from single plaques of lambda altSF lambda contain 10-30% phage of the P22 form. Similarly, lysates from single plaques of lambda altSF22 contain as much as 1% phage of the lambda form. Heteroduplex analyses reveal the following features of the lambda altSF chromosomes: (i) each form has the immunity genes appropriate to its immune phenotype, (ii) the substituted segments include genes involved in regulation and replication, and (iii) the alt phages have unusual additions and substitutions of DNA not normally found associated with either immunity region. In the case of lambda altSF lambda, there is a small insertion in the region of the cI gene. Because revertants that lose this inserted DNA concomitantly lose the ability to substitute, we conclude that the insertion plays a role in the substitution process. In the case of change from lambda altSF lambda to lambda altSF22, the substituting P22 genes are derived from the E. coli host. We have identified a set of Salmonella phage P22 genes in a standard nonlysogenic strain of E. coli K-12 that is apparently carried in a silent form. The reason for this lack of expression is not obvious, because this P22 material includes structural genes and associated promoters and is potentially active. When this set of genes substitutes for the analogous set of genetic material on the genome of lambda altSF lambda, the P22 genes are expressed in a normal manner.[Abstract] [Full Text] [Related] [New Search]