These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Secondary-site binding of Glu-plasmin, Lys-plasmin and miniplasmin to fibrin.
    Author: Suenson E, Thorsen S.
    Journal: Biochem J; 1981 Sep 01; 197(3):619-28. PubMed ID: 6459779.
    Abstract:
    Active-site-inhibited plasmin was prepared by inhibition with d-valyl-l-phenylalanyl-l-lysylchloromethane or by bovine pancreatic trypsin inhibitor (Kunitz inhibitor). Active-site-inhibited Glu-plasmin binds far more strongly to fibrin than Glu-plasminogen [native human plasminogen with N-terminal glutamic acid (residues 1-790)]. This binding is decreased by alpha(2)-plasmin inhibitor and tranexamic acid, and is, in the latter case, related to saturation of a strong lysine-binding site. In contrast, alpha(2)-plasmin inhibitor and tranexamic acid have only weak effects on the binding of Glu-plasminogen to fibrin. This demonstrates that its strong lysine-binding site is of minor importance to its binding to fibrin. Active-site-inhibited Lys-plasmin and Lys-plasminogen (Glu-plasminogen lacking the N-terminal residues Glu(1)-Lys(76), Glu(1)-Arg(67) or Glu(1)-Lys(77))display binding to fibrin similar to that of active-site inhibited Glu-plasmin. In addition, alpha(2)-plasmin inhibitor or tranexamic acid similarly decrease their binding to fibrin. Glu-plasminogen and active-site-inhibited Glu-plasmin have the same gross conformation, and conversion into their respective Lys- forms produces a similar marked change in conformation [Violand, Sodetz & Castellino (1975) Arch. Biochem. Biophys.170, 300-305]. Our results indicate that this change is not essential to the degree of binding to fibrin or to the effect of alpha(2)-plasmin inhibitor and tranexamic acid on this binding. The conversion of miniplasminogen (Glu-plasminogen lacking the N-terminal residues Glu(1)-Val(441)) into active-site-inhibited miniplasmin makes no difference to the degree of binding to fibrin, which is similarly decreased by the addition of tranexamic acid and unaffected by alpha(2)-plasmin inhibitor. Active-site-inhibited Glu-plasmin, Lys-plasmin and miniplasmin have lower fibrin-binding values in a plasma system than in a purified system. Results with miniplasmin(ogen) indicate that plasma proteins other than alpha(2)-plasmin inhibitor and histidine-rich glycoprotein decrease the binding of plasmin(ogen) to fibrin.
    [Abstract] [Full Text] [Related] [New Search]